Thrombopoietin protects H9C2 cells from excessive autophagy and apoptosis in doxorubicin-induced cardiotoxicity
نویسندگان
چکیده
Cardiac toxicity has been the major concern when using doxorubicin (DOX) in cancer therapy. Thrombopoietin (TPO) protects cardiac cells from DOX-induced cell damage; however, its molecular mechanism remains exclusive. The anti-autophagic and anti-apoptotic effects of TPO upon DOX treatment were studied in the cardiac H9C2 cell line, with bafilomycin A1 treatment as a positive control for autophagy inhibition. Cell viability was measured by Cell Counting Kit-8 assay in different treatment groups. The mRNA and/or protein levels of apoptotic markers and autophagy-associated factors were detected. The mean number of microtubule-associated protein 1A/1B-light chain 3 (LC3) puncta per cell was quantified to indicate autophagosomes and autolysosomes, of which the ones co-stained with lysosomal-associated membrane protein 1 were considered as autolysosomes. DOX treatment (5 µg/ml, 24 h) significantly impaired H9C2 cell viability compared with the control, while TPO pretreatment (10 ng/ml, 36 h) improved cell viability upon DOX treatment. DOX exposure markedly increased LC3 puncta in H9C2 cells, and TPO pretreatment reduced the number of autophagosomes, but showed no significant inhibitory effect on autolysosome formation. The autophagy inhibition by TPO upon DOX treatment was confirmed according to protein quantification of LC3-II and nucleoporin 62. TPO also suppressed autophagy-promoting protein Beclin-1, and elevated the anti-autophagic factors GATA-binding protein-4 and B cell lymphoma-2. Furthermore, TPO reduced DOX-induced apoptosis in H9C2 cells, as reflected by the amount changes of caspase-3. Taken together, these results revealed that TPO has a protective role in H9C2 cells from DOX-induced autophagy as well as apoptosis, and indicated that TPO may act as a cardioprotective drug in DOX-treated patients.
منابع مشابه
Portulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملThrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin.
BACKGROUND Doxorubicin (DOX) is an important antineoplastic agent. However, the associated cardiotoxicity, possibly mediated by the production of reactive oxygen species, has remained a significant and dose-limiting clinical problem. Our hypothesis is that the hematopoietic/megakaryocytopoietic growth factor thrombopoietin (TPO) protects against DOX-induced cardiotoxicity and might involve anti...
متن کاملEffect of Curcumin on Doxorubicin-induced Cytotoxicity in H9c2 Cardiomyoblast Cells
Objective(s) Doxorubicin (DOX), a widely used chemotherapeutic agent can give rise to serve cardiotoxicity by inducing apoptosis. Curcumin, the active compound of the rhizome of Curcuma longa L. has anti-inflammatory, antioxidant and anti-proliferative activities. Curcumin has been identified to increase cytotoxicity in several cancer cell lines in combination with DOX, but there is no study a...
متن کاملBN52021 protects rat cardiomyocyte from doxorubicin induced cardiotoxicity.
The aim of this study was to assess the role of platelet activating factor (PAF) antagonist BN52021 in doxorubicin induced cardiotoxicity and to explore the mechanisms. H9c2 cardiomyocytes were employed to investigate the effect of BN52021 on doxorubicin induced cell viability and cell apoptosis. Signaling pathway of caspase 3, cytochrome c, calcium and p38 mitogen-activated protein (MAPK) was ...
متن کاملHydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells.
We previously demonstrated the protective effect of hydrogen sulfide (H2S) against doxorubicin (DOX)-induced cardiotoxicity through inhibition of endoplasmic reticulum stress. The aim of the present study was to explore the role of p38 mitogen-activated protein kinase (MAPK) in DOX-induced cardiotoxicity and ascertain whether exogenous H2S protect...
متن کامل